/*---------------------------------------------------------------------------*\ FILE........: lsp.c AUTHOR......: David Rowe DATE CREATED: 24/2/93 This file contains functions for LPC to LSP conversion and LSP to LPC conversion. Note that the LSP coefficients are not in radians format but in the x domain of the unit circle. \*---------------------------------------------------------------------------*/ /* Copyright (C) 2009 David Rowe All rights reserved. This program is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License version 2.1, as published by the Free Software Foundation. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU Lesser General Public License along with this program; if not, see . */ #include "defines.h" #include "lsp.h" #include #include #include /*---------------------------------------------------------------------------*\ Introduction to Line Spectrum Pairs (LSPs) ------------------------------------------ LSPs are used to encode the LPC filter coefficients {ak} for transmission over the channel. LSPs have several properties (like less sensitivity to quantisation noise) that make them superior to direct quantisation of {ak}. A(z) is a polynomial of order lpcrdr with {ak} as the coefficients. A(z) is transformed to P(z) and Q(z) (using a substitution and some algebra), to obtain something like: A(z) = 0.5[P(z)(z+z^-1) + Q(z)(z-z^-1)] (1) As you can imagine A(z) has complex zeros all over the z-plane. P(z) and Q(z) have the very neat property of only having zeros _on_ the unit circle. So to find them we take a test point z=exp(jw) and evaluate P (exp(jw)) and Q(exp(jw)) using a grid of points between 0 and pi. The zeros (roots) of P(z) also happen to alternate, which is why we swap coefficients as we find roots. So the process of finding the LSP frequencies is basically finding the roots of 5th order polynomials. The root so P(z) and Q(z) occur in symmetrical pairs at +/-w, hence the name Line Spectrum Pairs (LSPs). To convert back to ak we just evaluate (1), "clocking" an impulse thru it lpcrdr times gives us the impulse response of A(z) which is {ak}. \*---------------------------------------------------------------------------*/ /*---------------------------------------------------------------------------*\ FUNCTION....: cheb_poly_eva() AUTHOR......: David Rowe DATE CREATED: 24/2/93 This function evalutes a series of chebyshev polynomials FIXME: performing memory allocation at run time is very inefficient, replace with stack variables of MAX_P size. \*---------------------------------------------------------------------------*/ static float cheb_poly_eva(float *coef,float x,int order) /* float coef[] coefficients of the polynomial to be evaluated */ /* float x the point where polynomial is to be evaluated */ /* int order order of the polynomial */ { int i; float *t,*u,*v,sum; float T[(order / 2) + 1]; /* Initialise pointers */ t = T; /* T[i-2] */ *t++ = 1.0; u = t--; /* T[i-1] */ *u++ = x; v = u--; /* T[i] */ /* Evaluate chebyshev series formulation using iterative approach */ for(i=2;i<=order/2;i++) *v++ = (2*x)*(*u++) - *t++; /* T[i] = 2*x*T[i-1] - T[i-2] */ sum=0.0; /* initialise sum to zero */ t = T; /* reset pointer */ /* Evaluate polynomial and return value also free memory space */ for(i=0;i<=order/2;i++) sum+=coef[(order/2)-i]**t++; return sum; } /*---------------------------------------------------------------------------*\ FUNCTION....: lpc_to_lsp() AUTHOR......: David Rowe DATE CREATED: 24/2/93 This function converts LPC coefficients to LSP coefficients. \*---------------------------------------------------------------------------*/ int lpc_to_lsp (float *a, int order, float *freq, int nb, float delta) /* float *a lpc coefficients */ /* int order order of LPC coefficients (10) */ /* float *freq LSP frequencies in radians */ /* int nb number of sub-intervals (4) */ /* float delta grid spacing interval (0.02) */ { float psuml,psumr,psumm,temp_xr,xl,xr,xm = 0; float temp_psumr; int i,j,m,flag,k; float *px; /* ptrs of respective P'(z) & Q'(z) */ float *qx; float *p; float *q; float *pt; /* ptr used for cheb_poly_eval() whether P' or Q' */ int roots=0; /* number of roots found */ float Q[order + 1]; float P[order + 1]; flag = 1; m = order/2; /* order of P'(z) & Q'(z) polynimials */ /* Allocate memory space for polynomials */ /* determine P'(z)'s and Q'(z)'s coefficients where P'(z) = P(z)/(1 + z^(-1)) and Q'(z) = Q(z)/(1-z^(-1)) */ px = P; /* initilaise ptrs */ qx = Q; p = px; q = qx; *px++ = 1.0; *qx++ = 1.0; for(i=1;i<=m;i++){ *px++ = a[i]+a[order+1-i]-*p++; *qx++ = a[i]-a[order+1-i]+*q++; } px = P; qx = Q; for(i=0;i= -1.0)){ xr = xl - delta ; /* interval spacing */ psumr = cheb_poly_eva(pt,xr,order);/* poly(xl-delta_x) */ temp_psumr = psumr; temp_xr = xr; /* if no sign change increment xr and re-evaluate poly(xr). Repeat til sign change. if a sign change has occurred the interval is bisected and then checked again for a sign change which determines in which interval the zero lies in. If there is no sign change between poly(xm) and poly(xl) set interval between xm and xr else set interval between xl and xr and repeat till root is located within the specified limits */ if(((psumr*psuml)<0.0) || (psumr == 0.0)){ roots++; psumm=psuml; for(k=0;k<=nb;k++){ xm = (xl+xr)/2; /* bisect the interval */ psumm=cheb_poly_eva(pt,xm,order); if(psumm*psuml>0.){ psuml=psumm; xl=xm; } else{ psumr=psumm; xr=xm; } } /* once zero is found, reset initial interval to xr */ freq[j] = (xm); xl = xm; flag = 0; /* reset flag for next search */ } else{ psuml=temp_psumr; xl=temp_xr; } } } /* convert from x domain to radians */ for(i=0; i