
NAME
ezjail — Jail administration framework.

SYNOPSIS
ezjail-admin command arguments...

OVERVIEW
The ezjail commands provide a simple way to create multiple jails using FreeBSD’s jail system. It simplifies
jail administration effort and minimizes jail system resource usage.

If you are not familiar with the FreeBSD jail concept, please refer to jail(8) before continuing. For addi-
tional design information, see the ezjail site at http://erdgeist.org/arts/software/ezjail.

DESCRIPTION
The ezjail system enables the system administrator to create multiple OS-level virtualization containers
called jails. Services like web servers, mail servers, FTP servers, are typically under frequent attack from the
public Internet and are exposed to possible compromise. The typical usage of jails is to run a single service
in each jail and if that service becomes compromised the rest of the jails and the host system are protected
from also being compromised.

The major shortcoming of jails is that each jail has its own copy of the world. This eats disk space, inodes,
and more importantly, prevents the sharing of binaries images between jails, thus increasing the memory
pressure on the host system. In addition, this causes a major administration headache when comes the time to
update the host system, as each jail needs to be updated independently.

Ezjail addresses these problems by creating a single basejail (a read-only nullfs(4) mounted directory)
populated with the same binaries as the host system which is then shared across all the other service jails cre-
ated by ezjail. Is is possible to update the base jail (and thus all the jails) in a single ezjail command.

Typical usage of jails include separation of services, creating test environments, consolidation of different
services on a single physical host, and more.

EZJAIL SYSTEM
The administrative interface to the ezjail system is the ezjail-admin(8) command. It is used to install the
ezjail environment, create new jails, archive, restore, delete and update jails, open a jail console, and list the
status of all the jails. See below for example usage, and refer to its man page for complete usage details.

Ezjail reads its configuration from its ezjail.conf(5). Normally it will not be necessary to edit this file,
as some sane defaults are provided. A sample configuration is installed as
EZJAIL_PREFIX/etc/ezjail.conf.sample.

A script is also installed as ezjail in the rc.d system to allow jails under ezjails control to be started at boot
time, given ezjail is enabled by setting the rc.conf(5) variable “$ezjail_enable” to “YES”.

WHAT’S IN A JAIL
The life of an ezjail installation

The base jail is first created by running ezjail-admin update or ezjail-admin install. Exam-
ple usage of this command is section EXAMPLES. This will create the base jail, setup a template jail used
to setting up new jails, install an example flavour (see below) and configure miscellaneous things.

This step is necessary before using the ezjail system. In particular, it is not possible to create new jails with-
out initializing the base jail in advance.

Once the base jail has been created, new jails may be created with ezjail-admin create. A new jail is
defined by its name and can have one or multiple IP addresses. Creating a new jail involves copying the tem-
plate jail to the new location, configuring nullfs(4) mounts for giving access to the base jail, and little
more. A jail that has just be created occupies about 2MB of disk space ; when running, only a handful of dae-
mons (cron, syslog, sendmail mainly) use memory.

After their creation, jails may be archived to a pax(1) archive, restored, and eventually deleted.

BSD January 15, 2011 1

EZJAIL (7) User’s Supplementary Documents EZJAIL (7)

When a new version of FreeBSD is released, or when an errata is published, only the base jail need to be
updated. Both source upgrades and binary upgrades (using freebsd-update(8)) are supported. The
ports(7) collection may also be updated by ezjail, but individual ports need to be upgraded individually by
the administrator.

Anatomy of a Jail
In the ezjail system, a jail is defined by a root directory and a couple of configuration values, mainly a name
and IP addresses. The root directory of the jail contains only the jail-specific files: configuration files, data
files, and ports installed by the administrator. The base system is shared amongst all jails, using a
nullfs(4) mount. This saves space and inodes (especially when the ports collection in made available to
the jails), and also memory, as the kernel is now able to share copies of running programs between the jails.

Unless the variable “$ezjail_jaildir” has been set by the administrator, the root directory of the jail is
kept in /usr/jails, which therefore needs to reside on a partition big enough.

There are also file-based jails, in which the storage space for the jail is kept in a file mounted with
mdconfig(8). There are two advantages to image jails. The amount of disk space allocated to the jail is
limited, while normal jails have no bound on the amount of disk space they use. On the other hand, the space
dedicated to the jail is no longer available to the host, even if the jail doesn’t use all its allocated space. In
addition, image jails contain a full copy of the basejail. This makes them portable between hosts running the
same FreeBSD version as the image was created with. Of course, the jail now needs to be updated indepen-
dently from all other jails, and there is no longer any sharing of common files between the jails.

Image jails may also be encrypted using bde(4) or geli(8), depending on the options given at creation
time.

Using ZFS
To giv e more precise control over the resources consumed by a jail, ezjail allows putting each jail in its own
zfs(8) filesystem. See Jail Creation Examples for details.

Also, ezjail can be configured to install its basejail and the accompaning template for all new jails into its
own filesystem. Set the “$ezjail_use_zfs” variable in your ezjail.conf to “YES” before running
ezjail-admin update or ezjail-admin install.

To use any zfs feature in ezjail, you first need to configure the destination ZFS filesystem using the
“$ezjail_jailzfs” variable.

You can use ZFS jails without installing the basejail into its own ZFS filesystem and vice versa. In order to
create ZFS jails by default, set the “$ezjail_use_zfs_for_jails” variable to “YES”.

Per-Jail options
As we saw earlier, a jail is described by a file in EZJAIL_PREFIX/etc/ezjail/. This file has the same
name as the jail it configures. It is a set of variables interpreted by sh(1), much like rc.conf(5) is. This file
is created at the same time as the jail, and usually doesn’t require tweaking from the administrator.

In addition to the variables described below, any variable used by the init script /etc/rc.d/jail may be
added manually by the administrator. The following variables are handled by ezjail, replacing JAILNAME
with the actual name of the jail:

jail_JAILNAME_hostname
The hostname of the jail. Defaults to the name of the jail, unless special characters needed to be
stripped.

jail_JAILNAME_ip
The IP addresses the jail is allowed to use.

BSD January 15, 2011 2

EZJAIL (7) User’s Supplementary Documents EZJAIL (7)

Since FreeBSD 7.2, several IP addresses may be given, separated by commas.

Since FreeBSD 9.0 each IP address can be prefixed by an interface name followed by the pipe
symbol. It will then automatically be configured on that interface when the jail is started and
removed from the interface when the jail stops. (You will probably have to escape the pipe symbol,
though.)

jail_JAILNAME_rootdir
The directory holding the jail files (the directory used as a mount point for file-based jails).
Defaults to the jail name inside “$ezjail_jaildir”.

jail_JAILNAME_exec_start
The command to run inside the jail when starting it. Defaults to “$ezjail_exec_start” or
“/bin/sh /etc/rc”.

jail_JAILNAME_exec_stop
The command to run inside the jail when stopping it. Defaults to the empty string, which means
“/bin/sh /etc/rc.shutdown”.

jail_JAILNAME_mount_enable
A boolean (“YES” or “NO”), that specifies whether the filesystems in /etc/fstab.
JAILNAME are carried out. Set by ezjail to “YES”, set to at your own risk.

jail_JAILNAME_devfs_enable
A boolean specifying whether to mount a /dev filesystem inside the jail. Defaults to
“$ezjail_devfs_enable”, or “YES”.

jail_JAILNAME_devfs_ruleset
The ruleset to apply when mounting a /dev filesystem inside a jail. Defaults to
“$ezjail_devfs_ruleset”, or “devfsrules_jail”.

ezjail_JAILNAME_procfs
A boolean specifying whether to mount a /proc filesystem inside the jail. Defaults to
“$ezjail_procfs_enable”, or “YES”.

ezjail_JAILNAME_fdescfs
A boolean specifying whether to mount a /dev/fs filesystem inside the jail. Defaults to
“$ezjail_fdescfs_enable”, or “YES”.

ezjail_JAILNAME_image
The path to the image file backing the jail, if the jail is file-based; or the empty string.

ezjail_JAILNAME_imagetype
The type of the image, if the jail is file-based; the empty string otherwise.

ezjail_JAILNAME_attachparams
The parameters to pass to the tool used to decrypt file-based, encrypted jails. Initialized from the
−C option when creating such a jail, or the empty string. “YES” if the jail requires interaction
with the administrator when starting (typically, encrypted jails that needs a password to be
decrypted).

ezjail_JAILNAME_forceblocking
If “YES”, start the jail even when it is marked as blocking.

ezjail_JAILNAME_zfs_datasets
For ZFS jails, additional ZFS datasets to attach to the jail when starting it. Taken from the −z
option when configuring a jail; the empty string otherwise.

BSD January 15, 2011 3

EZJAIL (7) User’s Supplementary Documents EZJAIL (7)

ezjail_JAILNAME_cpuset
The processor set to place the jail in when starting it (see cpuset(1)). Taken from the −c option
when configuring a jail; the empty string otherwise.

ezjail_JAILNAME_fib
The network view to giv e to the jail (see setfib(1)) when starting it. Taken from the −f option
when configuring the jail; the empty string otherwise.

ezjail_JAILNAME_parameters
The parameter set to be configured to the jail (see jail(8)) when starting it. You need to config-
ure this by hand.

ezjail_JAILNAME_post_start_script
The path to a script that will be executed after the jail successfully was created. The script receives
two parameters, the jid and the jail name. You need to configure this by hand.

In addition to these sh(1)-style variables, the administrator may add comment lines starting with
“PROVIDE:”, “REQUIRE:” and “BEFORE:”. These comments are used by rcorder(8) to determine the
order in which the jails are started. The default is to keep “REQUIRE” and “BEFORE” empty, meaning the
jails are started in no particular order.

Flavours
When a jail is created, it is not configured; in particular you likely want to edit files such as
/etc/resolv.conf, /etc/localtime and others. You may also want to create some system users,
maybe enable sshd(8). Ezjail solves this problem by using the concept of “flavours”. When a flavour is
selected at jail creation time, the flavour directory tree is merged into the new jail’s directory tree. In addi-
tion, the jail is configured so that on its first boot, the file ezjail.flavour is executed.

As part of the install sub-command, the flavour base directory was created as /usr/jails/flavours
and populated with an single flavour named example. This flavour contains 3 files customized for running
in a jail (etc/make.conf, etc/periodic.conf, etc/rc.conf). The example
ezjail.flavour also show how to create users, and introduce the convention of placing packages in
/pkg that are installed when the jail is first brought up. You are encouraged to copy the example flavour to
create your own flavour. Typical flavour usages include setting up jails with site-specific configuration, creat-
ing classes of jails for development or testing (such as a webdev flavour that would install Apache with your
favourite web development framework), pre-creating local users, and so on.

Updating the Base Jail
We already mentionned how easy it is to update jails, since only one copy needs to be updated. Ezjail only
handles updating the base system; updating the ports is left to the administrator (but see
“ports-mgmt/jailaudit” for a way to get notified of ports in need of an update). Updates are handled
with the ezjail-admin update command. It is possible to update the base jail from source or from
binary packages. If a base jail already exists, the update command installs the world in a temporary direc-
tory before moving it to the basejail, thus leaving intact all installed libraries. After making sure all software
running in the jails is linked with the new librairies, you may want to remove the old library versions. It is
often a good idea to update the jails when a new kernel is installed in the host, using the same sources.

Starting Jails
Like all rc(8) scripts, the ezjail script EZJAIL_PREFIX/etc/rc.d/ezjail accepts parameters
start, restart and stop, running, restarting and stopping all (non-blocking) jails under ezjail’s con-
trol by default. When passed an additional list of jails, only these jails are acted upon.

The order in which jails are started is determined by the rcorder(8) tool, using cues from the jail configu-
rations in ezjails EZJAIL_PREFIX/etc/ezjail control directory.

BSD January 15, 2011 4

EZJAIL (7) User’s Supplementary Documents EZJAIL (7)

The script examines its config, attaches and mounts images, and sets variables for each jail in the list before
passing its command on to the /etc/rc.d/jail script.

To interactively start all crypto image jails (or those depending on them), that were not automatically started
during booting, use the startcrypto parameter.

Note that jails configured to be in the norun state (using ezjail-admin config −r norun
jailname) are never started by the ezjail rc script.

As a convenient shortcut, the ezjail-admin command invokes the rc.d script and passes the correspond-
ing parameters, if they look like valid parameters.

Even if ezjail is not enabled in the rc.conf(5), rc.d/ezjail can be used to start and stop jails by prepending
force or one to the start, restart or stop parameter. Refer to rc(8) for details.

Remarks & Tips
Jails can be either accessed from the network, for instance by using ssh(1), or from the host system by using
the console command, which gives you an interactive shell inside the jail. It is also possible to edit the
files of a running jail, and the modifications will appear immediately inside the jail environment. When deal-
ing image-based, the config -i attach command allows one to access the disk of a file-based jail
without starting it.

Raw sockets are disallowed by default for all jails. This is not a ezjail restriction, but a design default of the
jail command. This means the ping(8) command will get “Operation not permitted.” error when used from
inside of a jail. There are sysctl(3) knobs for allowing a jail to access raw sockets, see the jail(8) man
page for details.

Once your jail has network access, then all your normal application install functions are availabe, right from
the jails console. In particular, if the ports collection was installed, it can be used as if from the host system.
A modified make.conf file is installed by the example flavour, that enable the ports collection to work
ev en with a read-only /usr/ports.

It is possible to change the IP address of a jail by editing its configuration file in
EZJAIL_PREFIX/etc/ezjail and restarting the jail.

The jails use the same network stack as the host system. In particular, that means that if a firewall is needed,
it must be configured in the host system.

The ezjail system (and the jails it controls) depends on the “$ezjail_enable” variable being set to
“YES” in rc.conf. It is possible to set this variable to “NO” if the administrator wants to temporarily
ezjail, or if she doesn’t want the jails to be automatically started on boot.

The ezjail system may be reset to a pristine state by removing all its files, that is:
/usr/jails/
EZJAIL_PREFIX/etc/ezjail/
EZJAIL_PREFIX/etc/ezjail.conf
/etc/fstab.∗ (but check the list of files this matches)

EXAMPLES
The examples below are only that, examples. The reader is encouraged to read the ezjail-admin(8) man
page for definitive documentation of all the options.

Initial Binary Installation
The ezjail system may be bootstrapped either from binary packages, or by building from source. The
install command allow to bootstrap from binary packages, while the update deals with installations
(and updates) from source.

BSD January 15, 2011 5

EZJAIL (7) User’s Supplementary Documents EZJAIL (7)

ezjail-admin install (without any options)
Fetch and install binaries for populating the base jail from the FreeBSD FTP server. If the host is
not running a -RELEASE version, you will be asked for the release to install. Neither the man
pages nor the source nor the ports tree are installed. Note that the FreeBSD FTP server is some-
times so busy the download times out. Use the −h host option to specify a less loaded server, or
the “$ezjail_ftphost” option in ezjail.conf(8).

ezjail-admin install −ms
Same behavior as above, except that man pages and sources are installed in the base jail.

ezjail-admin install −p
Same as the first example, but use portsnap(8) to fetch and extract a full FreeBSD ports tree
from portsnap.FreeBSD.org into the base jail. This is necessary if you plan to install ports
at later time into service jails.

ezjail-admin install −P (note uppercase P)
Only fetch the current version of the ports tree, adding it to the base jail. This allow to either add
the ports tree after the initial installation or update the ports tree in the base jail.

Install from a disk image
Mount and use a downloaded disc1.iso CDRom image file.

mdconfig -a -f /usr/8.0-RELEASE-i386-disc1.iso md0
mount -v -t cd9660 /dev/md0 /mnt
cd /mnt/8.0-RELEASE
ezjail-admin install -h file:// -sm

When the installation finishes, use the following to release the disc1.iso md0 file.

cd /usr
umount /mnt
mdconfig -d -u md0

Install from a local directory
To fetch the RELEASE base files manually, create a .netrc file in your home directory and pop-
ulate it with this.

machine ftp2.jp.FreeBSD.org
login anonymous
password FBSD@home.com
macdef init
prompt off
cd /pub/FreeBSD/releases/i386/8.0-RELEASE
epsv4 off
$ getdir base kernels manpages src
quit
macdef getdir
! mkdir $i
mreget $i/∗

Then issue this command on the command line. If the FTP download times out re-issue the FTP
command again to resume where it left off.

mkdir /usr/8.0-RELEASE
cd /usr/8.0-RELEASE
ftp -v ftp2.jp.FreeBSD.org
ezjail-admin install -h file:// -sm

BSD January 15, 2011 6

EZJAIL (7) User’s Supplementary Documents EZJAIL (7)

Use this option to target the 8.0-RELEASE files you FTP’ed as the source of the running binaries
used to populate the base jail. In addition the man pages and sources will be installed into the base
jail.

From Source Installation and Update
The update is used to both install or update from source the base jail, and for updating the base jail from
binary packages.

ezjail-admin update −b
Build and install a world from source. The sources are taken from /usr/src (but see the −s
flag). This can be used both for creating the initial base jail, and for updating it after the host has
been upgraded.

ezjail-admin update −u
Update the base jail to the next release using freebsd-update(8) (i.e. using binary packages).
This may be used only to update an existing installation.

ezjail-admin update −U −s 8.0-RELEASE
Upgrade the base jail to the host system’s release using freebsd-update(8). This may be used
only to upgrade an existing installation. Tell freebsd-update which OS version to expect in the
basejail via the −s option.

Note: Check uname(1) and especially the UNAME_r environment variable to upgrade to different
versions.

Jail Creation Examples
ezjail-admin create www.example.com 10.0.10.1

Create a new jail. The jail files will reside in directory www_example_com in /usr/jails,
unless the variable “$ezjail_jaildir” has been set to some other value. The jail will only be
allowed to use the given IP address. A warning will be displayed if this IP address is not already
configured in the host, or if some network daemon is already listening on this address. The name
of the jail which will appear in the list command or which will need to be given to the
console command is www.example.com.

ezjail-admin create −f example −r webserver www.example.com
10.0.10.2,2001:db8:1:9243::80
Create a new jail, placing it in directory webserver instead of deriving the directory name of the
jail from its host name. The jail will be created with the flavour example. This jail will be given
two IP addressses; this is possible only since FreeBSD 7.2.

ezjail-admin create −i −s 600M sandbox2 10.0.10.4
This creates a new file-based jail having a file size of 600 megabytes in
/usr/jails/sandbox2.img. An empty directory, /usr/jails/sandbox2, will be cre-
ated, and used as a mount point when starting the jail.

ezjail-admin create −c bde −s 600M sandbox3 10.0.10.5
This creates a new file based image jail, with gbde(4) encryption. During the gbde creation
process you are asked to enter a passphrase that is used as the prime seed value of the encryption
process. Remember this passphrase, you will be asked for the passphrase every time you want to
start this jail. As they require administrator interaction, jails backed by an encrypted file are not
automatically started when the system boots.

ezjail-admin create −c zfs −s 1G sandbox4 em1\|10.0.10.6
This creates a new zfs filesystem based jail with a default quota of 1 gigabyte using lzjb compres-
sion. It uses the parent ZFS filesystem configured in the “$ezjail_jailzfs” variable to create
the filesystem in. The jail command will add the ip address 10.0.10.6 as an alias on the device em1

BSD January 15, 2011 7

EZJAIL (7) User’s Supplementary Documents EZJAIL (7)

before starting the jail.

FILES
EZJAIL_PREFIX/bin/ezjail-admin
EZJAIL_PREFIX/etc/rc.d/ezjail
EZJAIL_PREFIX/etc/ezjail.conf
EZJAIL_PREFIX/share/examples/ezjail/
EZJAIL_PREFIX/etc/ezjail/∗
/usr/etc/fstab.∗

SEE ALSO
ezjail-admin(8), ezjail.conf(5), jail(8), nullfs(4), zfs(8).

Interesting additional tools include: “ports-mgmt/jailaudit”.

AUTHOR
Dirk Engling 〈erdgeist@erdgeist.org〉.

The man page is based on a draft by JoeB 〈joeb1@a1poweruser.com〉 and was rewritten by Frederic Perrin
〈frederic.perrin@resel.fr〉.

BSD January 15, 2011 8

