summaryrefslogtreecommitdiff
path: root/quantise.c
blob: da1d821f86396a891b554ef4ec606997e6a00a08 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
/*---------------------------------------------------------------------------*\

  FILE........: quantise.c
  AUTHOR......: David Rowe
  DATE CREATED: 31/5/92

  Quantisation functions for the sinusoidal coder.

\*---------------------------------------------------------------------------*/

/*
  All rights reserved.

  This program is free software; you can redistribute it and/or modify
  it under the terms of the GNU Lesser General Public License version 2.1, as
  published by the Free Software Foundation.  This program is
  distributed in the hope that it will be useful, but WITHOUT ANY
  WARRANTY; without even the implied warranty of MERCHANTABILITY or
  FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public
  License for more details.

  You should have received a copy of the GNU Lesser General Public License
  along with this program; if not, see <http://www.gnu.org/licenses/>.

*/

#include "quantise.h"

#include <assert.h>
#include <ctype.h>
#include <math.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>

#include "codec2_fft.h"
#include "defines.h"
#include "dump.h"
#include "lpc.h"
#include "lsp.h"
#include "mbest.h"
#include "phase.h"

#undef PROFILE
#include "machdep.h"

#define LSP_DELTA1 0.01 /* grid spacing for LSP root searches */

/*---------------------------------------------------------------------------*\

                          FUNCTION HEADERS

\*---------------------------------------------------------------------------*/

float speech_to_uq_lsps(float lsp[], float ak[], float Sn[], float w[],
                        int m_pitch, int order);

/*---------------------------------------------------------------------------*\

                             FUNCTIONS

\*---------------------------------------------------------------------------*/

int lsp_bits(int i) { return lsp_cb[i].log2m; }

int lspd_bits(int i) { return lsp_cbd[i].log2m; }

int lsp_pred_vq_bits(int i) { return lsp_cbjmv[i].log2m; }

/*---------------------------------------------------------------------------*\

  quantise

  Quantises vec by choosing the nearest vector in codebook cb, and
  returns the vector index.  The squared error of the quantised vector
  is added to se.

\*---------------------------------------------------------------------------*/

long quantise(const float *cb, float vec[], float w[], int k, int m, float *se)
/* float   cb[][K];	current VQ codebook		*/
/* float   vec[];	vector to quantise		*/
/* float   w[];         weighting vector                */
/* int	   k;		dimension of vectors		*/
/* int     m;		size of codebook		*/
/* float   *se;		accumulated squared error 	*/
{
  float e;     /* current error		*/
  long besti;  /* best index so far		*/
  float beste; /* best error so far		*/
  long j;
  int i;
  float diff;

  besti = 0;
  beste = 1E32;
  for (j = 0; j < m; j++) {
    e = 0.0;
    for (i = 0; i < k; i++) {
      diff = cb[j * k + i] - vec[i];
      e += (diff * w[i] * diff * w[i]);
    }
    if (e < beste) {
      beste = e;
      besti = j;
    }
  }

  *se += beste;

  return (besti);
}

/*---------------------------------------------------------------------------*\

  encode_lspds_scalar()

  Scalar/VQ LSP difference-in-frequency quantiser.

\*---------------------------------------------------------------------------*/

void encode_lspds_scalar(int indexes[], float lsp[], int order) {
  int i, k, m;
  float lsp_hz[order];
  float lsp__hz[order];
  float dlsp[order];
  float dlsp_[order];
  float wt[order];
  const float *cb;
  float se;

  for (i = 0; i < order; i++) {
    wt[i] = 1.0;
  }

  /* convert from radians to Hz so we can use human readable
     frequencies */

  for (i = 0; i < order; i++) lsp_hz[i] = (4000.0 / PI) * lsp[i];

  wt[0] = 1.0;
  for (i = 0; i < order; i++) {
    /* find difference from previous quantised lsp */

    if (i)
      dlsp[i] = lsp_hz[i] - lsp__hz[i - 1];
    else
      dlsp[0] = lsp_hz[0];

    k = lsp_cbd[i].k;
    m = lsp_cbd[i].m;
    cb = lsp_cbd[i].cb;
    indexes[i] = quantise(cb, &dlsp[i], wt, k, m, &se);
    dlsp_[i] = cb[indexes[i] * k];

    if (i)
      lsp__hz[i] = lsp__hz[i - 1] + dlsp_[i];
    else
      lsp__hz[0] = dlsp_[0];
  }
}

void decode_lspds_scalar(float lsp_[], int indexes[], int order) {
  int i, k;
  float lsp__hz[order];
  float dlsp_[order];
  const float *cb;

  for (i = 0; i < order; i++) {
    k = lsp_cbd[i].k;
    cb = lsp_cbd[i].cb;
    dlsp_[i] = cb[indexes[i] * k];

    if (i)
      lsp__hz[i] = lsp__hz[i - 1] + dlsp_[i];
    else
      lsp__hz[0] = dlsp_[0];

    lsp_[i] = (PI / 4000.0) * lsp__hz[i];
  }
}

#define MIN(a, b) ((a) < (b) ? (a) : (b))
#define MAX_ENTRIES 16384

void compute_weights(const float *x, float *w, int ndim) {
  int i;
  w[0] = MIN(x[0], x[1] - x[0]);
  for (i = 1; i < ndim - 1; i++) w[i] = MIN(x[i] - x[i - 1], x[i + 1] - x[i]);
  w[ndim - 1] = MIN(x[ndim - 1] - x[ndim - 2], PI - x[ndim - 1]);

  for (i = 0; i < ndim; i++) w[i] = 1. / (.01 + w[i]);
}

int find_nearest(const float *codebook, int nb_entries, float *x, int ndim) {
  int i, j;
  float min_dist = 1e15;
  int nearest = 0;

  for (i = 0; i < nb_entries; i++) {
    float dist = 0;
    for (j = 0; j < ndim; j++)
      dist += (x[j] - codebook[i * ndim + j]) * (x[j] - codebook[i * ndim + j]);
    if (dist < min_dist) {
      min_dist = dist;
      nearest = i;
    }
  }
  return nearest;
}

int find_nearest_weighted(const float *codebook, int nb_entries, float *x,
                          const float *w, int ndim) {
  int i, j;
  float min_dist = 1e15;
  int nearest = 0;

  for (i = 0; i < nb_entries; i++) {
    float dist = 0;
    for (j = 0; j < ndim; j++)
      dist += w[j] * (x[j] - codebook[i * ndim + j]) *
              (x[j] - codebook[i * ndim + j]);
    if (dist < min_dist) {
      min_dist = dist;
      nearest = i;
    }
  }
  return nearest;
}

void lspjmv_quantise(float *x, float *xq, int order) {
  int i, n1, n2, n3;
  float err[order], err2[order], err3[order];
  float w[order], w2[order], w3[order];
  const float *codebook1 = lsp_cbjmv[0].cb;
  const float *codebook2 = lsp_cbjmv[1].cb;
  const float *codebook3 = lsp_cbjmv[2].cb;

  w[0] = MIN(x[0], x[1] - x[0]);
  for (i = 1; i < order - 1; i++) w[i] = MIN(x[i] - x[i - 1], x[i + 1] - x[i]);
  w[order - 1] = MIN(x[order - 1] - x[order - 2], PI - x[order - 1]);

  compute_weights(x, w, order);

  n1 = find_nearest(codebook1, lsp_cbjmv[0].m, x, order);

  for (i = 0; i < order; i++) {
    xq[i] = codebook1[order * n1 + i];
    err[i] = x[i] - xq[i];
  }
  for (i = 0; i < order / 2; i++) {
    err2[i] = err[2 * i];
    err3[i] = err[2 * i + 1];
    w2[i] = w[2 * i];
    w3[i] = w[2 * i + 1];
  }
  n2 = find_nearest_weighted(codebook2, lsp_cbjmv[1].m, err2, w2, order / 2);
  n3 = find_nearest_weighted(codebook3, lsp_cbjmv[2].m, err3, w3, order / 2);

  for (i = 0; i < order / 2; i++) {
    xq[2 * i] += codebook2[order * n2 / 2 + i];
    xq[2 * i + 1] += codebook3[order * n3 / 2 + i];
  }
}

int check_lsp_order(float lsp[], int order) {
  int i;
  float tmp;
  int swaps = 0;

  for (i = 1; i < order; i++)
    if (lsp[i] < lsp[i - 1]) {
      // fprintf(stderr, "swap %d\n",i);
      swaps++;
      tmp = lsp[i - 1];
      lsp[i - 1] = lsp[i] - 0.1;
      lsp[i] = tmp + 0.1;
      i = 1; /* start check again, as swap may have caused out of order */
    }

  return swaps;
}

void force_min_lsp_dist(float lsp[], int order) {
  int i;

  for (i = 1; i < order; i++)
    if ((lsp[i] - lsp[i - 1]) < 0.01) {
      lsp[i] += 0.01;
    }
}

/*---------------------------------------------------------------------------*\

   lpc_post_filter()

   Applies a post filter to the LPC synthesis filter power spectrum
   Pw, which suppresses the inter-formant energy.

   The algorithm is from p267 (Section 8.6) of "Digital Speech",
   edited by A.M. Kondoz, 1994 published by Wiley and Sons.  Chapter 8
   of this text is on the MBE vocoder, and this is a freq domain
   adaptation of post filtering commonly used in CELP.

   I used the Octave simulation lpcpf.m to get an understanding of the
   algorithm.

   Requires two more FFTs which is significantly more MIPs.  However
   it should be possible to implement this more efficiently in the
   time domain.  Just not sure how to handle relative time delays
   between the synthesis stage and updating these coeffs.  A smaller
   FFT size might also be acceptable to save CPU.

   TODO:
   [ ] sync var names between Octave and C version
   [ ] doc gain normalisation
   [ ] I think the first FFT is not rqd as we do the same
       thing in aks_to_M2().

\*---------------------------------------------------------------------------*/

void lpc_post_filter(codec2_fftr_cfg fftr_fwd_cfg, float Pw[], float ak[],
                     int order, int dump, float beta, float gamma,
                     int bass_boost, float E) {
  int i;
  float x[FFT_ENC];          /* input to FFTs                */
  COMP Ww[FFT_ENC / 2 + 1];  /* weighting spectrum           */
  float Rw[FFT_ENC / 2 + 1]; /* R = WA                       */
  float e_before, e_after, gain;
  float Pfw;
  float max_Rw, min_Rw;
  float coeff;
  PROFILE_VAR(tstart, tfft1, taw, tfft2, tww, tr);

  PROFILE_SAMPLE(tstart);

  /* Determine weighting filter spectrum W(exp(jw)) ---------------*/

  for (i = 0; i < FFT_ENC; i++) {
    x[i] = 0.0;
  }

  x[0] = ak[0];
  coeff = gamma;
  for (i = 1; i <= order; i++) {
    x[i] = ak[i] * coeff;
    coeff *= gamma;
  }
  codec2_fftr(fftr_fwd_cfg, x, Ww);

  PROFILE_SAMPLE_AND_LOG(tfft2, taw, "        fft2");

  for (i = 0; i < FFT_ENC / 2; i++) {
    Ww[i].real = Ww[i].real * Ww[i].real + Ww[i].imag * Ww[i].imag;
  }

  PROFILE_SAMPLE_AND_LOG(tww, tfft2, "        Ww");

  /* Determined combined filter R = WA ---------------------------*/

  max_Rw = 0.0;
  min_Rw = 1E32;
  for (i = 0; i < FFT_ENC / 2; i++) {
    Rw[i] = sqrtf(Ww[i].real * Pw[i]);
    if (Rw[i] > max_Rw) max_Rw = Rw[i];
    if (Rw[i] < min_Rw) min_Rw = Rw[i];
  }

  PROFILE_SAMPLE_AND_LOG(tr, tww, "        R");

#ifdef DUMP
  if (dump) dump_Rw(Rw);
#endif

  /* create post filter mag spectrum and apply ------------------*/

  /* measure energy before post filtering */

  e_before = 1E-4;
  for (i = 0; i < FFT_ENC / 2; i++) e_before += Pw[i];

    /* apply post filter and measure energy  */

#ifdef DUMP
  if (dump) dump_Pwb(Pw);
#endif

  e_after = 1E-4;
  for (i = 0; i < FFT_ENC / 2; i++) {
    Pfw = powf(Rw[i], beta);
    Pw[i] *= Pfw * Pfw;
    e_after += Pw[i];
  }
  gain = e_before / e_after;

  /* apply gain factor to normalise energy, and LPC Energy */

  gain *= E;
  for (i = 0; i < FFT_ENC / 2; i++) {
    Pw[i] *= gain;
  }

  if (bass_boost) {
    /* add 3dB to first 1 kHz to account for LP effect of PF */

    for (i = 0; i < FFT_ENC / 8; i++) {
      Pw[i] *= 1.4 * 1.4;
    }
  }

  PROFILE_SAMPLE_AND_LOG2(tr, "        filt");
}

/*---------------------------------------------------------------------------*\

   aks_to_M2()

   Transforms the linear prediction coefficients to spectral amplitude
   samples.  This function determines A(m) from the average energy per
   band using an FFT.

\*---------------------------------------------------------------------------*/

void aks_to_M2(codec2_fftr_cfg fftr_fwd_cfg, float ak[], /* LPC's */
               int order,
               MODEL *model,   /* sinusoidal model parameters for this frame */
               float E,        /* energy term */
               float *snr,     /* signal to noise ratio for this frame in dB */
               int dump,       /* true to dump sample to dump file */
               int sim_pf,     /* true to simulate a post filter */
               int pf,         /* true to enable actual LPC post filter */
               int bass_boost, /* enable LPC filter 0-1kHz 3dB boost */
               float beta, float gamma, /* LPC post filter parameters */
               COMP Aw[]                /* output power spectrum */
) {
  int i, m;   /* loop variables */
  int am, bm; /* limits of current band */
  float r;    /* no. rads/bin */
  float Em;   /* energy in band */
  float Am;   /* spectral amplitude sample */
  float signal, noise;
  PROFILE_VAR(tstart, tfft, tpw, tpf);

  PROFILE_SAMPLE(tstart);

  r = TWO_PI / (FFT_ENC);

  /* Determine DFT of A(exp(jw)) --------------------------------------------*/
  {
    float a[FFT_ENC]; /* input to FFT for power spectrum */

    for (i = 0; i < FFT_ENC; i++) {
      a[i] = 0.0;
    }

    for (i = 0; i <= order; i++) a[i] = ak[i];
    codec2_fftr(fftr_fwd_cfg, a, Aw);
  }
  PROFILE_SAMPLE_AND_LOG(tfft, tstart, "      fft");

  /* Determine power spectrum P(w) = E/(A(exp(jw))^2 ------------------------*/

  float Pw[FFT_ENC / 2];

#ifndef FDV_ARM_MATH
  for (i = 0; i < FFT_ENC / 2; i++) {
    Pw[i] = 1.0 / (Aw[i].real * Aw[i].real + Aw[i].imag * Aw[i].imag + 1E-6);
  }
#else
  // this difference may seem strange, but the gcc for STM32F4 generates almost
  // 5 times faster code with the two loops: 1120 ms -> 242 ms so please leave
  // it as is or improve further since this code is called 4 times it results in
  // almost 4ms gain (21ms -> 17ms per audio frame decode @ 1300 )

  for (i = 0; i < FFT_ENC / 2; i++) {
    Pw[i] = Aw[i].real * Aw[i].real + Aw[i].imag * Aw[i].imag + 1E-6;
  }
  for (i = 0; i < FFT_ENC / 2; i++) {
    Pw[i] = 1.0 / (Pw[i]);
  }
#endif

  PROFILE_SAMPLE_AND_LOG(tpw, tfft, "      Pw");

  if (pf)
    lpc_post_filter(fftr_fwd_cfg, Pw, ak, order, dump, beta, gamma, bass_boost,
                    E);
  else {
    for (i = 0; i < FFT_ENC / 2; i++) {
      Pw[i] *= E;
    }
  }

  PROFILE_SAMPLE_AND_LOG(tpf, tpw, "      LPC post filter");

#ifdef DUMP
  if (dump) dump_Pw(Pw);
#endif

  /* Determine magnitudes from P(w) ----------------------------------------*/

  /* when used just by decoder {A} might be all zeroes so init signal
     and noise to prevent log(0) errors */

  signal = 1E-30;
  noise = 1E-32;

  for (m = 1; m <= model->L; m++) {
    am = (int)((m - 0.5) * model->Wo / r + 0.5);
    bm = (int)((m + 0.5) * model->Wo / r + 0.5);

    // FIXME: With arm_rfft_fast_f32 we have to use this
    // otherwise sometimes a to high bm is calculated
    // which causes trouble later in the calculation
    // chain
    // it seems for some reason model->Wo is calculated somewhat too high
    if (bm > FFT_ENC / 2) {
      bm = FFT_ENC / 2;
    }
    Em = 0.0;

    for (i = am; i < bm; i++) Em += Pw[i];
    Am = sqrtf(Em);

    signal += model->A[m] * model->A[m];
    noise += (model->A[m] - Am) * (model->A[m] - Am);

    /* This code significantly improves perf of LPC model, in
       particular when combined with phase0.  The LPC spectrum tends
       to track just under the peaks of the spectral envelope, and
       just above nulls.  This algorithm does the reverse to
       compensate - raising the amplitudes of spectral peaks, while
       attenuating the null.  This enhances the formants, and
       suppresses the energy between formants. */

    if (sim_pf) {
      if (Am > model->A[m]) Am *= 0.7;
      if (Am < model->A[m]) Am *= 1.4;
    }
    model->A[m] = Am;
  }
  *snr = 10.0 * log10f(signal / noise);

  PROFILE_SAMPLE_AND_LOG2(tpf, "      rec");
}

/*---------------------------------------------------------------------------*\

  FUNCTION....: encode_Wo()
  AUTHOR......: David Rowe
  DATE CREATED: 22/8/2010

  Encodes Wo using a WO_LEVELS quantiser.

\*---------------------------------------------------------------------------*/

int encode_Wo(C2CONST *c2const, float Wo, int bits) {
  int index, Wo_levels = 1 << bits;
  float Wo_min = c2const->Wo_min;
  float Wo_max = c2const->Wo_max;
  float norm;

  norm = (Wo - Wo_min) / (Wo_max - Wo_min);
  index = floorf(Wo_levels * norm + 0.5);
  if (index < 0) index = 0;
  if (index > (Wo_levels - 1)) index = Wo_levels - 1;

  return index;
}

/*---------------------------------------------------------------------------*\

  FUNCTION....: decode_Wo()
  AUTHOR......: David Rowe
  DATE CREATED: 22/8/2010

  Decodes Wo using a WO_LEVELS quantiser.

\*---------------------------------------------------------------------------*/

float decode_Wo(C2CONST *c2const, int index, int bits) {
  float Wo_min = c2const->Wo_min;
  float Wo_max = c2const->Wo_max;
  float step;
  float Wo;
  int Wo_levels = 1 << bits;

  step = (Wo_max - Wo_min) / Wo_levels;
  Wo = Wo_min + step * (index);

  return Wo;
}

/*---------------------------------------------------------------------------*\

  FUNCTION....: encode_log_Wo()
  AUTHOR......: David Rowe
  DATE CREATED: 22/8/2010

  Encodes Wo in the log domain using a WO_LEVELS quantiser.

\*---------------------------------------------------------------------------*/

int encode_log_Wo(C2CONST *c2const, float Wo, int bits) {
  int index, Wo_levels = 1 << bits;
  float Wo_min = c2const->Wo_min;
  float Wo_max = c2const->Wo_max;
  float norm;

  norm = (log10f(Wo) - log10f(Wo_min)) / (log10f(Wo_max) - log10f(Wo_min));
  index = floorf(Wo_levels * norm + 0.5);
  if (index < 0) index = 0;
  if (index > (Wo_levels - 1)) index = Wo_levels - 1;

  return index;
}

/*---------------------------------------------------------------------------*\

  FUNCTION....: decode_log_Wo()
  AUTHOR......: David Rowe
  DATE CREATED: 22/8/2010

  Decodes Wo using a WO_LEVELS quantiser in the log domain.

\*---------------------------------------------------------------------------*/

float decode_log_Wo(C2CONST *c2const, int index, int bits) {
  float Wo_min = c2const->Wo_min;
  float Wo_max = c2const->Wo_max;
  float step;
  float Wo;
  int Wo_levels = 1 << bits;

  step = (log10f(Wo_max) - log10f(Wo_min)) / Wo_levels;
  Wo = log10f(Wo_min) + step * (index);

  return POW10F(Wo);
}

/*---------------------------------------------------------------------------*\

  FUNCTION....: speech_to_uq_lsps()
  AUTHOR......: David Rowe
  DATE CREATED: 22/8/2010

  Analyse a windowed frame of time domain speech to determine LPCs
  which are the converted to LSPs for quantisation and transmission
  over the channel.

\*---------------------------------------------------------------------------*/

float speech_to_uq_lsps(float lsp[], float ak[], float Sn[], float w[],
                        int m_pitch, int order) {
  int i, roots;
  float Wn[m_pitch];
  float R[order + 1];
  float e, E;

  e = 0.0;
  for (i = 0; i < m_pitch; i++) {
    Wn[i] = Sn[i] * w[i];
    e += Wn[i] * Wn[i];
  }

  /* trap 0 energy case as LPC analysis will fail */

  if (e == 0.0) {
    for (i = 0; i < order; i++) lsp[i] = (PI / order) * (float)i;
    return 0.0;
  }

  autocorrelate(Wn, R, m_pitch, order);
  levinson_durbin(R, ak, order);

  E = 0.0;
  for (i = 0; i <= order; i++) E += ak[i] * R[i];

  /* 15 Hz BW expansion as I can't hear the difference and it may help
     help occasional fails in the LSP root finding.  Important to do this
     after energy calculation to avoid -ve energy values.
  */

  for (i = 0; i <= order; i++) ak[i] *= powf(0.994, (float)i);

  roots = lpc_to_lsp(ak, order, lsp, 5, LSP_DELTA1);
  if (roots != order) {
    /* if root finding fails use some benign LSP values instead */
    for (i = 0; i < order; i++) lsp[i] = (PI / order) * (float)i;
  }

  return E;
}

/*---------------------------------------------------------------------------*\

  FUNCTION....: encode_lsps_scalar()
  AUTHOR......: David Rowe
  DATE CREATED: 22/8/2010

  Scalar LSP quantiser. From a vector of unquantised (floating point)
  LSPs finds the quantised LSP indexes.

\*---------------------------------------------------------------------------*/

void encode_lsps_scalar(int indexes[], float lsp[], int order) {
  int i, k, m;
  float wt[1];
  float lsp_hz[order];
  const float *cb;
  float se;

  /* convert from radians to Hz so we can use human readable
     frequencies */

  for (i = 0; i < order; i++) lsp_hz[i] = (4000.0 / PI) * lsp[i];

  /* scalar quantisers */

  wt[0] = 1.0;
  for (i = 0; i < order; i++) {
    k = lsp_cb[i].k;
    m = lsp_cb[i].m;
    cb = lsp_cb[i].cb;
    indexes[i] = quantise(cb, &lsp_hz[i], wt, k, m, &se);
  }
}

/*---------------------------------------------------------------------------*\

  FUNCTION....: decode_lsps_scalar()
  AUTHOR......: David Rowe
  DATE CREATED: 22/8/2010

  From a vector of quantised LSP indexes, returns the quantised
  (floating point) LSPs.

\*---------------------------------------------------------------------------*/

void decode_lsps_scalar(float lsp[], int indexes[], int order) {
  int i, k;
  float lsp_hz[order];
  const float *cb;

  for (i = 0; i < order; i++) {
    k = lsp_cb[i].k;
    cb = lsp_cb[i].cb;
    lsp_hz[i] = cb[indexes[i] * k];
  }

  /* convert back to radians */

  for (i = 0; i < order; i++) lsp[i] = (PI / 4000.0) * lsp_hz[i];
}

/*---------------------------------------------------------------------------*\

  FUNCTION....: encode_lsps_vq()
  AUTHOR......: David Rowe
  DATE CREATED: 15 Feb 2012

  Multi-stage VQ LSP quantiser developed by Jean-Marc Valin.

\*---------------------------------------------------------------------------*/

void encode_lsps_vq(int *indexes, float *x, float *xq, int order) {
  int i, n1, n2, n3;
  float err[order], err2[order], err3[order];
  float w[order], w2[order], w3[order];
  const float *codebook1 = lsp_cbjmv[0].cb;
  const float *codebook2 = lsp_cbjmv[1].cb;
  const float *codebook3 = lsp_cbjmv[2].cb;

  w[0] = MIN(x[0], x[1] - x[0]);
  for (i = 1; i < order - 1; i++) w[i] = MIN(x[i] - x[i - 1], x[i + 1] - x[i]);
  w[order - 1] = MIN(x[order - 1] - x[order - 2], PI - x[order - 1]);

  compute_weights(x, w, order);

  n1 = find_nearest(codebook1, lsp_cbjmv[0].m, x, order);

  for (i = 0; i < order; i++) {
    xq[i] = codebook1[order * n1 + i];
    err[i] = x[i] - xq[i];
  }
  for (i = 0; i < order / 2; i++) {
    err2[i] = err[2 * i];
    err3[i] = err[2 * i + 1];
    w2[i] = w[2 * i];
    w3[i] = w[2 * i + 1];
  }
  n2 = find_nearest_weighted(codebook2, lsp_cbjmv[1].m, err2, w2, order / 2);
  n3 = find_nearest_weighted(codebook3, lsp_cbjmv[2].m, err3, w3, order / 2);

  indexes[0] = n1;
  indexes[1] = n2;
  indexes[2] = n3;
}

/*---------------------------------------------------------------------------*\

  FUNCTION....: decode_lsps_vq()
  AUTHOR......: David Rowe
  DATE CREATED: 15 Feb 2012

\*---------------------------------------------------------------------------*/

void decode_lsps_vq(int *indexes, float *xq, int order, int stages) {
  int i, n1, n2, n3;
  const float *codebook1 = lsp_cbjmv[0].cb;
  const float *codebook2 = lsp_cbjmv[1].cb;
  const float *codebook3 = lsp_cbjmv[2].cb;

  n1 = indexes[0];
  n2 = indexes[1];
  n3 = indexes[2];

  for (i = 0; i < order; i++) {
    xq[i] = codebook1[order * n1 + i];
  }

  if (stages != 1) {
    for (i = 0; i < order / 2; i++) {
      xq[2 * i] += codebook2[order * n2 / 2 + i];
      xq[2 * i + 1] += codebook3[order * n3 / 2 + i];
    }
  }
}

/*---------------------------------------------------------------------------*\

  FUNCTION....: bw_expand_lsps()
  AUTHOR......: David Rowe
  DATE CREATED: 22/8/2010

  Applies Bandwidth Expansion (BW) to a vector of LSPs.  Prevents any
  two LSPs getting too close together after quantisation.  We know
  from experiment that LSP quantisation errors < 12.5Hz (25Hz step
  size) are inaudible so we use that as the minimum LSP separation.

\*---------------------------------------------------------------------------*/

void bw_expand_lsps(float lsp[], int order, float min_sep_low,
                    float min_sep_high) {
  int i;

  for (i = 1; i < 4; i++) {
    if ((lsp[i] - lsp[i - 1]) < min_sep_low * (PI / 4000.0))
      lsp[i] = lsp[i - 1] + min_sep_low * (PI / 4000.0);
  }

  /* As quantiser gaps increased, larger BW expansion was required
     to prevent twinkly noises.  This may need more experiment for
     different quanstisers.
  */

  for (i = 4; i < order; i++) {
    if (lsp[i] - lsp[i - 1] < min_sep_high * (PI / 4000.0))
      lsp[i] = lsp[i - 1] + min_sep_high * (PI / 4000.0);
  }
}

void bw_expand_lsps2(float lsp[], int order) {
  int i;

  for (i = 1; i < 4; i++) {
    if ((lsp[i] - lsp[i - 1]) < 100.0 * (PI / 4000.0))
      lsp[i] = lsp[i - 1] + 100.0 * (PI / 4000.0);
  }

  /* As quantiser gaps increased, larger BW expansion was required
     to prevent twinkly noises.  This may need more experiment for
     different quanstisers.
  */

  for (i = 4; i < order; i++) {
    if (lsp[i] - lsp[i - 1] < 200.0 * (PI / 4000.0))
      lsp[i] = lsp[i - 1] + 200.0 * (PI / 4000.0);
  }
}

/*---------------------------------------------------------------------------*\

  FUNCTION....: apply_lpc_correction()
  AUTHOR......: David Rowe
  DATE CREATED: 22/8/2010

  Apply first harmonic LPC correction at decoder.  This helps improve
  low pitch males after LPC modelling, like hts1a and morig.

\*---------------------------------------------------------------------------*/

void apply_lpc_correction(MODEL *model) {
  if (model->Wo < (PI * 150.0 / 4000)) {
    model->A[1] *= 0.032;
  }
}

/*---------------------------------------------------------------------------*\

  FUNCTION....: encode_energy()
  AUTHOR......: David Rowe
  DATE CREATED: 22/8/2010

  Encodes LPC energy using an E_LEVELS quantiser.

\*---------------------------------------------------------------------------*/

int encode_energy(float e, int bits) {
  int index, e_levels = 1 << bits;
  float e_min = E_MIN_DB;
  float e_max = E_MAX_DB;
  float norm;

  e = 10.0 * log10f(e);
  norm = (e - e_min) / (e_max - e_min);
  index = floorf(e_levels * norm + 0.5);
  if (index < 0) index = 0;
  if (index > (e_levels - 1)) index = e_levels - 1;

  return index;
}

/*---------------------------------------------------------------------------*\

  FUNCTION....: decode_energy()
  AUTHOR......: David Rowe
  DATE CREATED: 22/8/2010

  Decodes energy using a E_LEVELS quantiser.

\*---------------------------------------------------------------------------*/

float decode_energy(int index, int bits) {
  float e_min = E_MIN_DB;
  float e_max = E_MAX_DB;
  float step;
  float e;
  int e_levels = 1 << bits;

  step = (e_max - e_min) / e_levels;
  e = e_min + step * (index);
  e = POW10F(e / 10.0);

  return e;
}

static float ge_coeff[2] = {0.8, 0.9};

void compute_weights2(const float *x, const float *xp, float *w) {
  w[0] = 30;
  w[1] = 1;
  if (x[1] < 0) {
    w[0] *= .6;
    w[1] *= .3;
  }
  if (x[1] < -10) {
    w[0] *= .3;
    w[1] *= .3;
  }
  /* Higher weight if pitch is stable */
  if (fabsf(x[0] - xp[0]) < .2) {
    w[0] *= 2;
    w[1] *= 1.5;
  } else if (fabsf(x[0] - xp[0]) > .5) /* Lower if not stable */
  {
    w[0] *= .5;
  }

  /* Lower weight for low energy */
  if (x[1] < xp[1] - 10) {
    w[1] *= .5;
  }
  if (x[1] < xp[1] - 20) {
    w[1] *= .5;
  }

  // w[0] = 30;
  // w[1] = 1;

  /* Square the weights because it's applied on the squared error */
  w[0] *= w[0];
  w[1] *= w[1];
}

/*---------------------------------------------------------------------------*\

  FUNCTION....: quantise_WoE()
  AUTHOR......: Jean-Marc Valin & David Rowe
  DATE CREATED: 29 Feb 2012

  Experimental joint Wo and LPC energy vector quantiser developed by
  Jean-Marc Valin.  Exploits correlations between the difference in
  the log pitch and log energy from frame to frame.  For example
  both the pitch and energy tend to only change by small amounts
  during voiced speech, however it is important that these changes be
  coded carefully.  During unvoiced speech they both change a lot but
  the ear is less sensitive to errors so coarser quantisation is OK.

  The ear is sensitive to log energy and loq pitch so we quantise in
  these domains.  That way the error measure used to quantise the
  values is close to way the ear senses errors.

  See http://jmspeex.livejournal.com/10446.html

\*---------------------------------------------------------------------------*/

void quantise_WoE(C2CONST *c2const, MODEL *model, float *e, float xq[]) {
  int i, n1;
  float x[2];
  float err[2];
  float w[2];
  const float *codebook1 = ge_cb[0].cb;
  int nb_entries = ge_cb[0].m;
  int ndim = ge_cb[0].k;
  float Wo_min = c2const->Wo_min;
  float Wo_max = c2const->Wo_max;
  float Fs = c2const->Fs;

  /* VQ is only trained for Fs = 8000 Hz */

  assert(Fs == 8000);

  x[0] = log10f((model->Wo / PI) * 4000.0 / 50.0) / log10f(2);
  x[1] = 10.0 * log10f(1e-4 + *e);

  compute_weights2(x, xq, w);
  for (i = 0; i < ndim; i++) err[i] = x[i] - ge_coeff[i] * xq[i];
  n1 = find_nearest_weighted(codebook1, nb_entries, err, w, ndim);

  for (i = 0; i < ndim; i++) {
    xq[i] = ge_coeff[i] * xq[i] + codebook1[ndim * n1 + i];
    err[i] -= codebook1[ndim * n1 + i];
  }

  /*
    x = log2(4000*Wo/(PI*50));
    2^x = 4000*Wo/(PI*50)
    Wo = (2^x)*(PI*50)/4000;
  */

  model->Wo = powf(2.0, xq[0]) * (PI * 50.0) / 4000.0;

  /* bit errors can make us go out of range leading to all sorts of
     probs like seg faults */

  if (model->Wo > Wo_max) model->Wo = Wo_max;
  if (model->Wo < Wo_min) model->Wo = Wo_min;

  model->L = PI / model->Wo; /* if we quantise Wo re-compute L */

  *e = POW10F(xq[1] / 10.0);
}

/*---------------------------------------------------------------------------*\

  FUNCTION....: encode_WoE()
  AUTHOR......: Jean-Marc Valin & David Rowe
  DATE CREATED: 11 May 2012

  Joint Wo and LPC energy vector quantiser developed my Jean-Marc
  Valin.  Returns index, and updated states xq[].

\*---------------------------------------------------------------------------*/

int encode_WoE(MODEL *model, float e, float xq[]) {
  int i, n1;
  float x[2];
  float err[2];
  float w[2];
  const float *codebook1 = ge_cb[0].cb;
  int nb_entries = ge_cb[0].m;
  int ndim = ge_cb[0].k;

  assert((1 << WO_E_BITS) == nb_entries);

  if (e < 0.0)
    e = 0; /* occasional small negative energies due LPC round off I guess */

  x[0] = log10f((model->Wo / PI) * 4000.0 / 50.0) / log10f(2);
  x[1] = 10.0 * log10f(1e-4 + e);

  compute_weights2(x, xq, w);
  for (i = 0; i < ndim; i++) err[i] = x[i] - ge_coeff[i] * xq[i];
  n1 = find_nearest_weighted(codebook1, nb_entries, err, w, ndim);

  for (i = 0; i < ndim; i++) {
    xq[i] = ge_coeff[i] * xq[i] + codebook1[ndim * n1 + i];
    err[i] -= codebook1[ndim * n1 + i];
  }

  // printf("enc: %f %f (%f)(%f) \n", xq[0], xq[1], e, 10.0*log10(1e-4 + e));
  return n1;
}

/*---------------------------------------------------------------------------*\

  FUNCTION....: decode_WoE()
  AUTHOR......: Jean-Marc Valin & David Rowe
  DATE CREATED: 11 May 2012

  Joint Wo and LPC energy vector quantiser developed my Jean-Marc
  Valin.  Given index and states xq[], returns Wo & E, and updates
  states xq[].

\*---------------------------------------------------------------------------*/

void decode_WoE(C2CONST *c2const, MODEL *model, float *e, float xq[], int n1) {
  int i;
  const float *codebook1 = ge_cb[0].cb;
  int ndim = ge_cb[0].k;
  float Wo_min = c2const->Wo_min;
  float Wo_max = c2const->Wo_max;

  for (i = 0; i < ndim; i++) {
    xq[i] = ge_coeff[i] * xq[i] + codebook1[ndim * n1 + i];
  }

  // printf("dec: %f %f\n", xq[0], xq[1]);
  model->Wo = powf(2.0, xq[0]) * (PI * 50.0) / 4000.0;

  /* bit errors can make us go out of range leading to all sorts of
     probs like seg faults */

  if (model->Wo > Wo_max) model->Wo = Wo_max;
  if (model->Wo < Wo_min) model->Wo = Wo_min;

  model->L = PI / model->Wo; /* if we quantise Wo re-compute L */

  *e = POW10F(xq[1] / 10.0);
}