diff options
-rw-r--r-- | fixpow.c | 235 | ||||
-rw-r--r-- | generate_table.c | 34 |
2 files changed, 269 insertions, 0 deletions
diff --git a/fixpow.c b/fixpow.c new file mode 100644 index 0000000..be787b2 --- /dev/null +++ b/fixpow.c | |||
@@ -0,0 +1,235 @@ | |||
1 | /* Parts of this software was written by Dirk Engling <erdgeist@erdgeist.org> | ||
2 | Those parts are considered beerware. Prost. Skol. Cheers or whatever. | ||
3 | |||
4 | Original idea and the place where I heavily stole code from is | ||
5 | http://www.quinapalus.com/efunc.html | ||
6 | Dr Mark St John OWEN, E-mail: mail -at- quinapalus -dot- com | ||
7 | */ | ||
8 | |||
9 | #include <stdint.h> | ||
10 | #include <stdio.h> | ||
11 | #include <stdlib.h> | ||
12 | #include <math.h> | ||
13 | |||
14 | #define TO_Q16(X) ((int32_t)(65536.f*(X))) | ||
15 | #define FROM_Q16(X) ((double)((X)/65536.f)) | ||
16 | |||
17 | // It works as follows: | ||
18 | // P = pow_QX_QY_QP( x, y ) == exp( ln(x) * y ) | ||
19 | |||
20 | // Where if x is negative: | ||
21 | // * y must have no fractional part, | ||
22 | // * the result's sign is the lowest integral bit of y | ||
23 | |||
24 | // We note that in every standard Q representation ln(x) will not exceed | ||
25 | // the value 22, so that we can safely work with a Q26 representation. | ||
26 | // | ||
27 | // if ln(x) * y would overflow in that representation, so would | ||
28 | // exp( ln(x) * y ) in Q16. | ||
29 | // | ||
30 | // Finally exp() is calculated in the domain specified by script | ||
31 | |||
32 | #if 0 | ||
33 | The table[tm], generated from different versions of | ||
34 | generate_table, though. | ||
35 | +00,000000000465661287199 x = x + ( x >> 31 ) | ||
36 | +00,000000000931322574182 x = x + ( x >> 30 ) | ||
37 | +00,000000001862645147496 x = x + ( x >> 29 ) | ||
38 | +00,000000003725290291523 x = x + ( x >> 28 ) | ||
39 | +00,000000007450580569168 x = x + ( x >> 27 ) | ||
40 | +00,000000014901161082825 x = x + ( x >> 26 ) | ||
41 | +00,000000029802321943606 x = x + ( x >> 25 ) | ||
42 | +00,000000059604642999034 x = x + ( x >> 24 ) | ||
43 | +00,000000119209282445354 x = x + ( x >> 23 ) | ||
44 | +00,000000238418550679858 x = x + ( x >> 22 ) | ||
45 | +00,000000476837044516323 x = x + ( x >> 21 ) | ||
46 | +00,000000953673861659188 x = x + ( x >> 20 ) | ||
47 | +00,000001907346813825409 x = x + ( x >> 19 ) | ||
48 | +00,000003814689989685890 x = x + ( x >> 18 ) | ||
49 | +00,000007629365427567572 x = x + ( x >> 17 ) | ||
50 | +00,000015258672648362398 x = x + ( x >> 16 ) | ||
51 | +00,000030517112473186380 x = x + ( x >> 15 ) | ||
52 | +00,000061033293680638527 x = x + ( x >> 14 ) | ||
53 | +00,000122062862525677371 x = x + ( x >> 13 ) | ||
54 | +00,000244110827527362707 x = x + ( x >> 12 ) | ||
55 | +00,000488162079501351187 x = x + ( x >> 11 ) | ||
56 | +00,000976085973055458925 x = x + ( x >> 10 ) | ||
57 | +00,001951220131261749337 x = x + ( x >> 9 ) | ||
58 | +00,003898640415657322889 x = x + ( x >> 8 ) | ||
59 | +00,007782140442054948960 x = x + ( x >> 7 ) | ||
60 | +00,015504186535965254479 x = x + ( x >> 6 ) | ||
61 | +00,030771658666753687328 x = x + ( x >> 5 ) | ||
62 | +00,060624621816434839938 x = x + ( x >> 4 ) | ||
63 | +00,117783035656383455736 x = x + ( x >> 3 ) | ||
64 | +00,223143551314209764858 x = x + ( x >> 2 ) | ||
65 | +00,405465108108164384859 x = x + ( x >> 1 ) | ||
66 | +00,693147180559945286227 x = ( x << 1 ) | ||
67 | +01,386294361119890572454 x = ( x << 2 ) | ||
68 | +02,772588722239781144907 x = ( x << 4 ) | ||
69 | +05,545177444479562289814 x = ( x << 8 ) | ||
70 | +11,090354888959124579628 x = ( x << 16 ) | ||
71 | +21,487562597358305538364 x = ( x << 31 ) | ||
72 | |||
73 | for negative values: | ||
74 | |||
75 | -00,374693449441410697531 017FAFA3 x-= ( x >> 2 ) + ( x >> 4 ) | ||
76 | -00,207639364778244489562 00D49F69 x-= ( x >> 2 ) - ( x >> 4 ) | ||
77 | -00,115831815525121700761 00769C9D x-= ( x >> 3 ) - ( x >> 6 ) | ||
78 | -00,060380510988907482028 003DD463 x-= ( x >> 4 ) - ( x >> 8 ) | ||
79 | -00,031748698314580298119 002082BB x-= ( x >> 5 ) | ||
80 | -00,015996403602177928366 0010615C x-= ( x >> 6 ) + ( x >> 12 ) | ||
81 | -00,008089270731616965762 0008488D x-= ( x >> 7 ) + ( x >> 12 ) | ||
82 | -00,004159027401785260480 00044243 x-= ( x >> 8 ) + ( x >> 12 ) | ||
83 | -00,003423823349553609900 00038188 x-= ( x >> 8 ) - ( x >> 11 ) | ||
84 | -00,001832733117311761669 0001E070 x-= ( x >> 9 ) - ( x >> 13 ) | ||
85 | -00,000961766059678620302 0000FC1F x-= ( x >> 10 ) - ( x >> 16 ) | ||
86 | -00,000484583944571210926 00007F07 x-= ( x >> 11 ) - ( x >> 18 ) | ||
87 | -00,000243216525424976433 00003FC1 x-= ( x >> 12 ) - ( x >> 20 ) | ||
88 | |||
89 | #endif | ||
90 | |||
91 | // input is Q16, outputQ26 | ||
92 | static int32_t fixlog( int32_t x ) { | ||
93 | int32_t t,y; | ||
94 | |||
95 | y = 0x2996BD9E; // ln(2^15) << 26 | ||
96 | if(x<0x00008000) x<<=16, y-= 0x2C5C85FD; | ||
97 | if(x<0x00800000) x<<= 8, y-= 0x162E42FE; | ||
98 | if(x<0x08000000) x<<= 4, y-= 0x0B17217F; | ||
99 | if(x<0x20000000) x<<= 2, y-= 0x058B90BF; | ||
100 | if(x<0x40000000) x<<= 1, y-= 0x02C5C85F; | ||
101 | t=x+(x>>1); if((t&0x80000000)==0) x=t, y-= 0x019F323E; | ||
102 | t=x+(x>>2); if((t&0x80000000)==0) x=t, y-= 0x00E47FBE; | ||
103 | t=x+(x>>3); if((t&0x80000000)==0) x=t, y-= 0x00789C1D; | ||
104 | t=x+(x>>4); if((t&0x80000000)==0) x=t, y-= 0x003E1461; | ||
105 | t=x+(x>>5); if((t&0x80000000)==0) x=t, y-= 0x001F829B; | ||
106 | t=x+(x>>6); if((t&0x80000000)==0) x=t, y-= 0x000FE054; | ||
107 | t=x+(x>>7); if((t&0x80000000)==0) x=t, y-= 0x0007F80A; | ||
108 | t=x+(x>>8); if((t&0x80000000)==0) x=t, y-= 0x0003FE01; | ||
109 | t=x+(x>>9); if((t&0x80000000)==0) x=t, y-= 0x0001FF80; | ||
110 | t=x+(x>>10);if((t&0x80000000)==0) x=t, y-= 0x0000FFE0; | ||
111 | t=x+(x>>11);if((t&0x80000000)==0) x=t, y-= 0x00007FF8; | ||
112 | t=x+(x>>12);if((t&0x80000000)==0) x=t, y-= 0x00003FFE; | ||
113 | t=x+(x>>13);if((t&0x80000000)==0) x=t, y-= 0x00001FFF; | ||
114 | x = 0x80000000-x; | ||
115 | y-= x>>5; | ||
116 | return y; | ||
117 | } | ||
118 | |||
119 | // input is Q26, output Q16 | ||
120 | static uint32_t fixexp(int32_t x) { | ||
121 | int32_t t; | ||
122 | uint32_t y = 0x10000; | ||
123 | |||
124 | if( (x & 0x80000000) == 0 ) { | ||
125 | t=x-0x162E42FE; if(t>=0) x=t,y<<=8; | ||
126 | t=x-0x0B17217F; if(t>=0) x=t,y<<=4; | ||
127 | t=x-0x058B90BF; if(t>=0) x=t,y<<=2; | ||
128 | t=x-0x02C5C85F; if(t>=0) x=t,y<<=1; | ||
129 | t=x-0x019F323E; if(t>=0) x=t,y+=y>>1; | ||
130 | t=x-0x00E47FBE; if(t>=0) x=t,y+=y>>2; | ||
131 | t=x-0x00789C1D; if(t>=0) x=t,y+=y>>3; | ||
132 | t=x-0x003E1461; if(t>=0) x=t,y+=y>>4; | ||
133 | t=x-0x001F829B; if(t>=0) x=t,y+=y>>5; | ||
134 | t=x-0x000FE054; if(t>=0) x=t,y+=y>>6; | ||
135 | t=x-0x0007F80A; if(t>=0) x=t,y+=y>>7; | ||
136 | t=x-0x0003FE01; if(t>=0) x=t,y+=y>>8; | ||
137 | t=x-0x0001FF80; if(t>=0) x=t,y+=y>>9; | ||
138 | t=x-0x0000FFE0; if(t>=0) x=t,y+=y>>10; | ||
139 | t=x-0x00007FF8; if(t>=0) x=t,y+=y>>11; | ||
140 | t=x-0x00003FFE; if(t>=0) x=t,y+=y>>12; | ||
141 | t=x-0x00001FFF; if(t>=0) x=t,y+=y>>13; | ||
142 | if(x&0x0001000) y+=y>>14; | ||
143 | if(x&0x0000800) y+=y>>15; | ||
144 | if(x&0x0000400) y+=y>>16; | ||
145 | if(x&0x0000200) y+=y>>17; | ||
146 | if(x&0x0000100) y+=y>>18; | ||
147 | if(x&0x0000080) y+=y>>19; | ||
148 | if(x&0x0000040) y+=y>>20; | ||
149 | if(x&0x0000020) y+=y>>21; | ||
150 | if(x&0x0000010) y+=y>>22; | ||
151 | if(x&0x0000008) y+=y>>23; | ||
152 | if(x&0x0000004) y+=y>>24; | ||
153 | if(x&0x0000002) y+=y>>25; | ||
154 | if(x&0x0000001) y+=y>>26; | ||
155 | } else { | ||
156 | x=-x; | ||
157 | t=x-0x162E42FE; if(t>=0) x=t,y>>=8; | ||
158 | t=x-0x0B17217F; if(t>=0) x=t,y>>=4; | ||
159 | t=x-0x058B90BF; if(t>=0) x=t,y>>=2; | ||
160 | t=x-0x02C5C85F; if(t>=0) x=t,y>>=1; | ||
161 | t=x-0x017FAFA3; if(t>=0) x=t,y-=(y>>2) + (y>>4); | ||
162 | t=x-0x00D49F69; if(t>=0) x=t,y-=(y>>2) - (y>>4); | ||
163 | t=x-0x00769C9D; if(t>=0) x=t,y-=(y>>3) - (y>>6); | ||
164 | t=x-0x003DD463; if(t>=0) x=t,y-=(y>>4) - (y>>8); | ||
165 | t=x-0x002082BB; if(t>=0) x=t,y-=y>>5; | ||
166 | t=x-0x0010615C; if(t>=0) x=t,y-=(y>>6) + (y>>12); | ||
167 | t=x-0x0008488D; if(t>=0) x=t,y-=(y>>7) + (y>>12); | ||
168 | t=x-0x00044243; if(t>=0) x=t,y-=(y>>8) + (y>>12); | ||
169 | t=x-0x00038188; if(t>=0) x=t,y-=(y>>8) - (y>>11); | ||
170 | t=x-0x0001E070; if(t>=0) x=t,y-=(y>>9) - (y>>13); | ||
171 | t=x-0x0000FC1F; if(t>=0) x=t,y-=(y>>10)- (y>>16); | ||
172 | t=x-0x00007F07; if(t>=0) x=t,y-=(y>>11)- (y>>18); | ||
173 | t=x-0x00003FC1; if(t>=0) x=t,y-=(y>>12)- (y>>20); | ||
174 | if(x&0x0002000) y-=y>>13; | ||
175 | if(x&0x0001000) y-=y>>14; | ||
176 | if(x&0x0000800) y-=y>>15; | ||
177 | if(x&0x0000400) y-=y>>16; | ||
178 | if(x&0x0000200) y-=y>>17; | ||
179 | if(x&0x0000100) y-=y>>18; | ||
180 | if(x&0x0000080) y-=y>>19; | ||
181 | if(x&0x0000040) y-=y>>20; | ||
182 | if(x&0x0000020) y-=y>>21; | ||
183 | if(x&0x0000010) y-=y>>22; | ||
184 | if(x&0x0000008) y-=y>>23; | ||
185 | if(x&0x0000004) y-=y>>24; | ||
186 | if(x&0x0000002) y-=y>>25; | ||
187 | if(x&0x0000001) y-=y>>26; | ||
188 | } | ||
189 | |||
190 | return y; | ||
191 | } | ||
192 | |||
193 | int fixpow(int32_t *pow, int32_t base, int32_t exponent ) | ||
194 | { | ||
195 | int neg = 0; | ||
196 | int32_t log_base, res; | ||
197 | int64_t log_base_times_exponent; | ||
198 | |||
199 | if( base < 0 ) { | ||
200 | // negative bases only can have integer exponents | ||
201 | if( exponent & 0xffff ) return -1; | ||
202 | // sign of power of a negative base is determined by | ||
203 | // wether exp is even | ||
204 | if( exponent & 0x10000 ) neg = 1; | ||
205 | base = abs(base); | ||
206 | } | ||
207 | |||
208 | // To calculate pow(base,exp), we do exp( log(base) * exp ) | ||
209 | // which is mathematically the same. log_base is Q26 | ||
210 | log_base = fixlog( base ); | ||
211 | log_base_times_exponent = ( (int64_t)log_base * (int64_t)exponent ) >> 16; | ||
212 | |||
213 | // fixexp overflows for values > 21,48756259689264 which | ||
214 | // in Q26 notation is 1442005916 | ||
215 | if( log_base_times_exponent > 1442005916 ) | ||
216 | return -2; | ||
217 | |||
218 | res = (int32_t)log_base_times_exponent; | ||
219 | res = fixexp( res ); | ||
220 | if( neg ) res = -res; | ||
221 | *pow = res; | ||
222 | |||
223 | return 0; | ||
224 | } | ||
225 | |||
226 | int main() | ||
227 | { | ||
228 | double base = -.5f; | ||
229 | double exponent = 10.f; | ||
230 | int32_t result; | ||
231 | int error = fixpow( &result, TO_Q16(base), TO_Q16(exponent) ); | ||
232 | |||
233 | printf( "pow(%lf,%lf)=%lf (%s)\n", base, exponent, FROM_Q16(result), error?"ERROR":"OK" ); | ||
234 | return 0; | ||
235 | } | ||
diff --git a/generate_table.c b/generate_table.c new file mode 100644 index 0000000..c7a9d0c --- /dev/null +++ b/generate_table.c | |||
@@ -0,0 +1,34 @@ | |||
1 | #include <math.h> | ||
2 | #include <stdio.h> | ||
3 | #include <stdlib.h> | ||
4 | |||
5 | // s(-1) n(14) off(+1) x = x - ( x >> 14 ) | ||
6 | // s( 1) n(-4) off( 0) x = ( x << 4 ) | ||
7 | // s( 1) n( 8) off(-1) x = - x + ( x << 8 ) | ||
8 | |||
9 | int main() { | ||
10 | int n, m, nsign; | ||
11 | |||
12 | // loop over all constructs in the form +-1*x^+-2n, n=-31..+31 | ||
13 | for (n=-31; n<= 31; ++n ) | ||
14 | for ( nsign=-1; nsign<=1; nsign+=2 ) | ||
15 | { | ||
16 | // The one term only case | ||
17 | double v = (double)nsign * pow( 2.f, (double)n ); | ||
18 | if( v > 0.f ) | ||
19 | printf( "%0+25.21lf %08X x = %s ( x %s %2d )%s\n", log(v), abs((int)(67108864.f*log(v))), nsign==-1?"-":" ", n>=0?"<<":">>", (int)abs(n), " !RECOMMENDED!" ); | ||
20 | |||
21 | // Loop over second term | ||
22 | for (m=-31; m<=31; ++m ) | ||
23 | { | ||
24 | double v = pow( 2.f, (double)m ) + (double)nsign * pow( 2.f, (double)n ); | ||
25 | if( v > 0.f ) { | ||
26 | printf( "%0+25.21lf %08X x = ( x %s %2d ) %s ( x %s %2d )%s\n", log(v), abs((int)(67108864.f*log(v))), m>=0?"<<":">>", (int)abs(m), nsign==-1?"-":"+", n>=0?"<<":">>", (int)abs(n), n*m?"":" !RECOMMENDED!" ); | ||
27 | if( v < 1.f ) | ||
28 | printf( "%0+25.21lf %08X x-= ( x %s %2d ) %s ( x %s %2d )\n", log(1.0f - v), abs((int)(67108864.f*log(1.0f - v))), m>=0?"<<":">>", (int)abs(m), nsign==-1?"-":"+", n>=0?"<<":">>", (int)abs(n) ); | ||
29 | } | ||
30 | } | ||
31 | } | ||
32 | |||
33 | return 0; | ||
34 | } | ||